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Abstract. Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SO4
solution using a rotating disk as the working electrode present a current instability region within the range of
applied voltage in which the current is controlled by mass transport in the electrolyte. According to the literature
(Barcia, 1992) the electro-dissolution process leads to the existence of an axial viscosity gradient in the interface
metal-solution, which leads to a deviation from von Kdrmdn’s classical solution for rotating disk flow. On two
previous papers, Pontes et al (J. of the Braz. Soc. Mechanical Sciences, Vol. XXIV, pp. 189, 2002, and Phys.
of Fluids, Vol. 16, No. 8, pp. 707, 2004) showed that stability of the steady flow, affected by a time-independent
viscosity gradient pointing in the azial directions, is strongly affected by the stratified viscosity profile. In this work,
we go one step beyond, by considering the stability of the hydrodynamic field, coupled through the viscosity, to the
chemical field originated by the transport of one species. A phenomenological law is assumed, relating the viscosity
to the concentration of chemical species. The viscosity at the interface with the electrode is estimated by relating
the exzperimental value of the current density, to the concentration gradient of the relevant chemical specie at that
point. The steady state of the problem is obtained and a linear stability analysis of the coupled fields is made.
The resulting eigenvalue-eigenfuction problem is presented, as well as the neutral stability curves for disturbances
turning with the same angular velocity of the disk (stationary) and for disturbances turning with angular velocity
different from the disk one(non-stationary).

keywords: Rotating Disk, Hydrodynamic Stability, Electrochemistry

1. Introduction

Electrochemical cells using a rotating disk electrode are a widely used experimental tool in electrochemistry,
due the simplicity of the setup and the fact that the mass flux is independent of the radial position along the
disk, at steady state conditions (Levich, 1962). Furthermore, the rate of transfer of ions close of the electrode is
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conveniently controlled by imposing an adequate angular velocity to the electrode. This rate of transfer defines
the maximum steady state current attained in an experiment.

Two current instabilities are observed in the region where the current is controlled by mass transport (Ferreira
et al., 1994). The first instability is intrinsic to the system, while the current instability close to the active-passive
transition is affected by the output impedance of the control equipment. This instability can be suppressed by
using a negative feedback resistance (Epelboin et al., 1979), that gives rise to a continuous transition.

Most explanations presented in the literature for the current instabilities are based on mechanisms proposing
a FeSO, film precipitated at the electrode surface (Russel and Newman, 1986). In fact, changes in the ohmic
voltage drop due to precipitation and dissolution of a FeSOy4 film provide an acceptable explanation for the
instability observed in the active/passive transition region, coupled with the output impedance of the control
equipment. However, this model can not be generalized to explain oscillations observed at the beginning of the
current plateau. Indeed, using electro-hydrodynamic (EHD) impedance measurements (Tribollet and Newman,
1983), Barcia et al. (1992) studied the electro-dissolution of iron electrodes in 1 M H2SO4 at the current
plateau, before and after the first instability region. They propose that the electro-dissolution process leads
to the existence of a viscosity gradient in the diffusion boundary layer, which could affect the stability of the
hydrodynamic field and explain the observed current instability.

To investigate the importance of the hydrodynamics in the electro-dissolution of iron, Ferreira et al. (1994)
and Geraldo et al. (1998) studied the influence of the viscosity on the current oscillations observed at the
beginning of the current plateau region of the above described experiment. These authors found that increasing
the bulk electrolyte viscosity — and therefore decreasing the Reynolds number of the experiment — by adding
glycerol to the solution, the current signals evolve from chaotic to periodic, and to a stationary regime, where
the instability is suppressed. They also found that the current oscillations are enhanced by an increase in the
angular velocity of the electrode.

The existence of a hydrodynamic instability in rotating disk flow has been the object of a number of
investigations, both experimental and theoretical in the case of fluids with uniform viscosity. The main result
shows that the steady flow becomes unstable beyond a certain non-dimensional distance from the axis of rotation.

The flow develops corotating vortices which spiral outward with their axes along logarithmic spirals of angle
90° + ¢ (¢ &~ 13°) with respect to radius of the disk. Malik (1986) determined the neutral stability curve for
stationary vortex disturbances, which turn with the angular velocity of the disk. Neutral curves were presented
in the a x R, 8 X R and € x R planes for zero-frequency disturbances, where a and § are the components
of the real perturbation wave-vector along the radial and azimuthal directions and ¢ is the angle between the
perturbation and the radial direction, given by ¢ = tan~! 3/a. The critical Reynolds number was found to be
in good agreement with experimental results, at a value of R = 285.36.

A comprehensive review of the literature on the subject, concerning research made until 1989 can be found
in the paper by Reed and Saric (1989).

Faller (1991) determined the neutral stability curves for setup configurations consisting of rotating or sta-
tionary disks and flows approaching the disk with (rotating flow) or without (stationary flow) bulk angular
velocity. Critical Reynolds number for the case of rotating disk and stationary fluid was found as 69.4.

Lingwood (1995) presented the neutral curve for vortices turning with several angular velocities and theo-
retical results concerning the asymptotic response of the flow to an impulsive excitation exerted in the flow at
a certain radius at ¢t = 0. Additionally, Lingwood’s work addresses the case where the wavenumber component
along the radial direction, «, is complex, leading to an exponential growth along that direction. The curve for
this case defines the region of absolute instability, with a critical Reynolds number of R = 510.625.

It is well known that boundary layers can be destabilized by increasing the viscosity close to the wall
and stabilized by decreasing, through heating or cooling the wall (Schlichting and Gersten, 1999). Schéfer et
al. (Schifer et al., 1995) deduced an asymptotic expression for the critical Reynolds number for moderate
temperature differences in boundary layers developed over flat plates, taking into account the temperature
dependency of the viscosity. Turkyilmazoglu Cole and Gajjar (1998) ) studied the influence of heat transfer on
the convective and absolute instability of compressible boundary layers in rotating disk flow.

On two previous papers, Pontes et al. (2002, 2004) , showed that stability of the steady flow, affected
by a time-independent viscosity gradient pointing in the axial directions, is strongly affected by the stratified
viscosity profile. In this work, we go one step beyond, by considering the stability of the hydrodynamic field,
coupled through the viscosity, to the chemical field resulting from the transport of the relevant chemical specie.
A phenomenological law is assumed, relating the viscosity to the concentration of chemical specie. The viscosity
at the interface with the electrode is estimated by relating the experimental value of the current density, to
the concentration gradient of the chemical specie at that point. The steady state of the problem is obtained
and a linear stability analysis of the coupled fields is made. The resulting eigenvalue-eigenfuction problem is
presented, as well as the neutral stability curves for stationary disturbances, turning with the same angular
velocity of the disk and for disturbances turning with angular velocity different from the disk one.
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2. Governing Equations

The problem is governed by the continuity and the Navier-Stokes equations, coupled through the viscosity,
to the transport equation of the relevant chemical specie. These equations, written in the frame attached to
the surface of the rotating disk read:

divv =0 1)
Dv 1 1 .

E:—Qva—Qx(er)—;gradp—i—;dWT (2)
DC

DtT = div(Dgrad Cr) (3)

where 7 is the viscous stress tensor for a newtonian fluid with variable viscosity, Cr is the total concentration of
the chemical specie and the factor D, multiplying the concentration gradient in Eq. (3) is the variable diffusion
coefficient of the specie.

The evolution equations are written in non-dimensional form. Variables having units of length or its recipro-
cal (radial and axial coordinates, perturbation wavenumber along the radial direction) are made non-dimensional
with the length used to measure the thikness of the boundary layer, (v, /Q)'/?, where v, is the bulk viscosity
of the fluid. Velocity components are divided by the local imposed azimuthal velocity .2, pressure is divided by
the reference pressure p(r.£2)?, viscosity is divided by the bulk value, time and the eigenvalue of the linearized
problem are made non-dimensional with the time required by a particle, turning with the azimuthal velocity
7.£2, to move a distance equal to the reference length, (v, /Q)'/%. Here, r. is the dimensional coordinate along
the radial direction where the stability analysis is carried. The non-dimensional concentration of the chemical
specie is defined by:

Cr—Cx
C=——7— 4
CS - C(oo ( )
We define also the Reynolds and the Schmidt numbers by the relations:
)\ D
R=r} (—) and Sc=—">= (5)
Vo Voo

At this point, we assume that the viscosity depends on the concentration of the chemical specie, and, conse-
quently, on the axial coordinate z. We also assume the Stokes-Einstein law, which postulates that the product
of the diffusion coefficient by the viscosity is constant:

Dv =Dy vy (6)

where Do, and v, are the bulk diffusion coefficient and the bulk viscosity, respectively. In adition, we assume
that the viscosity varies with the concentration, according to:

V = Vs exp(mC) (7)
Using the bulk viscosity and diffusion coefficientes, v, and D, to adimensionalize Eqgs. (6) and (7) we obtain:
Dv=1 and v = exp(mC) (®)
Equations (1 — 3) take the following form, after introducing the adimensionalizing factors
divv =0 (9)
D 1
F;’:—Qezxv—ezxgradp—i—ﬁdivr (10)
DCr 1
Tﬁ = ﬁ le(D grad CT) (].].)

3. The Base State
3.1. Base state equations

The base state is the Von Karman similarity solution for a fluid with the viscosity depending on the con-
centration field, which is assumed to vary along the axial coordinate only. In dimensional variables:

Uy rQF(z)

Up rQG(z)

U, | = (oo Q)2 H(2) (12)
p PUocQP(2)

C Cx + (Cs — Cx)C(2)
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Here, Cs and C, are, respectively, the concentration of the chemical specie at the electrode surface and in
the bulk. Boundary conditions for ', G, H and P are F = G = H = P = 0 at the disk surface (z = 0),
F=H =P =0and G’ = —1in 2z — oo. The non-dimensional concentration profile, C, varies from 1, z = 0,
to 0, in z — oo.

Eq. (12) is rewritten in nondimensional form:

Ty rF/R

Vo TG/R

v, | =] H/R (13)
P p/R?

C C

Introducing Eq. (13) in Egs. (9 — 11), together with Egs. (8), we obtain the ordinary nonlinear system for the
axial profiles F', G, H, P and C:

QF+H = 0 (14)
F?— (G+1)*+HF —vF"—VF = 0 (15)
QF(G+1)+ HG —vG" — VG = 0 (16)
P'+HH —vH" —2//H' = 0 (17)

C/I !
SCHO'—7+%O' = 0 (18)

where v is given by Eq. (8) and

V' =mexp(mC)C’ (19)

3.2. Evaluation of the Viscosity at the Electrode/Electrolyte Interface

Eqgs. (14 — 18) are solved using the Newton method, in a uniform grid of points, with space derivatives
represented by second order approximations. Solving these equations require specification of two parameters:
the bulk Schmidt number (S¢ = 2000) and the parameter m appearing in Eq. (7), which ultimately define de
electrolyte viscosity at the interface with the electrode, where the non-dimensional concentration of the relevant
chemical specie is equal to 1. Though both questions were adressed in a separate paper by the authors (Barcia
2005, submitted) we briefly review the key points of the subject for the sake of completness.

The bulk Schmidt number is easily estimated by noting that the viscosity of the 1 M H5SO4 solution is
Voo = 1.0 x 1072em? /s and the diffusion coefficient of the Fet2 ion in the electrolyte is Do, =.

The limit current density at the interface is given by the relation:

i:nFL ! (C% — CF) Ve % (20)
z=0

where i is expressed in A/cm?, n is the valency number of the chemical specie (n = 2), F = 96500 C/mol, is
the Faraday constant, C¥ = 2.0 x 10™3mol/cm? is the dimensional concentration of the specie at saturation
conditions and C*, = 0mol/cm?. The limit current density is obtained experimentaly as i = 0.8810 A/cm? at
900 rpm. The remainning variables in Eq. (20), v9/v~ and the nondimensional derivative of the concentration
profile at the interface, dC/dz|,_,, depend on the concentration profile, which is obtained by solving Eqgs. (14 —
18). The profile is iteratively solved until the RHS of Eq. (20) converges to the experimental value of the limit
current density. Convergence is attained for vy /v, = 2.255.

3.3. Base State Profiles

The high Schmidt number of the problem leads to a rather thin concentration boundary layer. The ratio
between the thiknesses of the hydrodynamic (d;) and the concentration (d;) bondary layers is given, for the
rotating disk flow problem, by (Levich, 1962):

(;—h ~28c!/3 (21)

C
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The thin concentration boundary layer results in

velocity profiles very close to the ones obtained for 10— ‘ ‘ ‘ 10
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tion boundary layer, which extends to z ~ 0.25. T o6/ -\ 0.6
In particular, we obtain H = —0.88559 far from 2_0_4 l 00_4
the disk for the variable viscosity flow considered, 0.2 Q 02
whereas H = —0.88447 for the constant viscos- 0_0/ R 0.0— ~
ity case. The non-dimensional velocity, viscos- 00 10 20 30 40 0.0 01 02 03
ity and concentration profiles, F', G, H, v, the o5 ‘ ‘ 1.0—— ‘
variable diffusion coefficient D and C, obtained 1 /
for vy/veo = 2.255 and Sc = 2000 are shown in 2.0 g0.8
Fig. (1). > g
However, the derivatives of the velocity profiles 15 06
are strongly affected by the concentration bound-
ary layer, as shown in Fig. (2). Upon assuming a 1'%_0 01 02 03 0’6_0 T 01 02 03
thickness of §;, = 6 for the hydrodynamic bound- z z

ary layer we estimate a thickness of d. = 0.24 for

the concentration one, using Eq. (21). The profiles .. . . . . .
icallv obtained th this estimati Figure 1: Dimensionless velocity, concentration and viscos-
numerically obtained agree wi is estimation. ity profiles for 1/va — 2.255 and Sc — 2000,

2.0

0.5

"1 condlant viscosity | ‘ ‘ ‘ ‘ ‘ : : :
04 -y Variablevis:osit))// A 1 0 /
)§ 1 - 10 onstant viscosity - -4 1]
03 [V L ariable viscosity VR, Congant viscosity
w , 0.0 - / Varidble viscosity |
0.2 ’ -12
i N L — |
0.1— : : : : -1.0 -“l/ : : : -16—— : : : :
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
z z z
-0.2— ; ; ; ; 20
-0.38 | 1 16, Constant viscosity |
L | Varigble viscosity
1.0 05 .12
-0.4 - - Constant viscosity i /
ot Coﬂﬂft\('sws.‘tyf i ariablé viscodity | O g
05 Variahle viscosity or / \
06 I 0.0 4
-0.7— : : : : -1.0 AT : : 0= : : : :
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
z z z

Figure 2: The first three derivatives of the non-dimensional velocity profiles, F' and G, for the constant and
variable viscosity cases.

4. Stability of the Base State

4.1. Stability equations

We turn now to the question of the stability of the base state with respect to small disturbances. The
hydrodynamic and chemical fields are written as a summ of the base state plus a perturbation:

v = Up+ O vg = g+ Vg _ 5 (22)
v, = Up -+, p = p+p Cr = C+C
where the perturbation is given by, in dimensional form:
Up re§) f
) refdg
Uy = reS2h exp [i(ar + BRO — wt)] + cc (23)
P Pl T
C Coo+(Cs—Cx)c

where w is a complex number, with R(w) and $(w) being, respectively, the frequency and the rate of growth
of the perturbation. The parameters a and 3 are the components of the perturbation wave-vector along the
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radial and azimuthal directions. For a given time, the phase of the perturbation is constant along branches of a
logarithmic spiral, with the branches curved in the clockwise direction if 8/« is positive and counter-clockwise, if
negative. The structure turns counter-clockwise if w/[3 is positive and clockwise, if negative. In non-dimensional
form:

exp [i(ar + BRO — wt)] + cc (24)

o3 T —

M ST
I

The perturbation variables are introduced in Egs. (9 — 11) and nonlinear terms are dropped. The parallel
flow hypothesis is assumed, in order to confirm the assumption that perturbation variables are separable.
To conclude, terms of order R~2 are dropped, leading to the following complex, non-symmetric, generalized
eigenvalue-eigenfuction problem:

A A Az h By h
Agr Agx Ao n | =wk Bao Ui (25)
Az Ass c B33 c

where = ag — B f, missing elements in the matrices are zero and the operators A;; and B;; are given by:

Ay = a1aD* 4 an3D? + a112D? + a111 D + aqio Az = a1z1D+aip

A3 = a132D* 4+ a131D + ar30 A1 = a2u1D + a2

Asy = a2D?+ a1 D + asxo Azz = az31D +azs

A1 = asio Ass = aszD?+asz D+ asso
Bu = D2 — 5\2 BQQ = 1 B33 = 1iSe

where D" = d"/dz" and the coefficients a;;, are given by:

G114 = iV aj3 =1i(2v — H) ajz =" —iv (N + X*) + R(aF + BG) —i(H' + F)
a1 = —iv/ (A* + X?) +iHN’ a110 = iX* (V" + vA?) — R(aF 4+ BG) N> — R (aF" + BG") + iH'N?
ajo1 =2(G+1) a120 = 2G’

a3 = R(aF' + BG")y ai31 = 2R (aF" + BG") + 6iN’F| v + 2R (aF' + BG") '

a130 = (RX* (aF' + BG") + R (aF" + BG") + 4iN*F') v + (2R (aF" + BG") + 6iN°F) v + R (aF’ + BG")v"
a1 =2(G+1) as1g = —iR (G’ — BF') Q299 = iV a1 =i (V' — H)
ago0 = —ivA® + R (aF + 3G) —iF

ass1 = iR (aG" — BF')y azzo = iR ((aG" — BF") v + (aG' — BF")¥)

azio = RScC’ 0332:*% a331:% <%+%C”7+SCI7H>

— 1 4
aszo = iR Sc(aF + G) — % <)\2 + - <<2V;7 _ ,Y/) o — ,YC//))

where v = dv/dC. Boundary conditions of the problem require non-slip flow and vanishing axial component of
the velocity at the electrode surface. These conditions are already fulfilled by the base-state, so the hydrody-
namic field cannot be modified by the perturbation at the electrode surface. In consequence we must require
h=n=c=0in 2z = 0. Moreover, we conclude from the continuity equation, that h’ = 0 at the electrode
surface. In z — oo we require that the perturbation vanishes (h = n = ¢ = 0) and that A’ = 0.

The eigenvalue-eigenfuction problem defined by Eq. (25) is solved numerically. Space derivatives are re-
placed by discrete second-order representations, transforming the original problem in an eigenvalue-eigenvector
problem, which is solved through the inverse power method.

4.2. Results

The neutral stability curves for stationary disturbances and for disturbances turning with w = 0.025, ob-
tained by solving the eigenvalue-eigenfunction problem are presented in Fig. 3. Figs. 3(a) and 3(b) show the
neutral curves associated to the constant and the variable viscosity cases, in the a x R and 8 x R plane, re-
spectively. Fig. 3(c) shows the curves of the variable viscosity case, in the « x 3 plane. This figure shows that
the coupling of the mass concentration field to the hydrodynamic field through the variable viscosity affects the



Proceedings of the ENCIT 2006, ABCM, Curitiba — PR, Brazil — Paper CIT06-0851

stability properties of the coupled fields, by strongly perturbing the neutral curve of the hydrodynamic modes
and by introducing a new family of much more unstable modes, associated to the mass trasnport equation.

The critical Reynolds number of the hydrodynamic modes is reduced to approximately 50% of value for
constant viscosity fluids. In addition, the unstable region is strongly enlarged and extends to modes with higher
wavenumbers, than in the constant viscosity case. The neutral curve for constant viscosity fluids presents two
minima, the second one occuring at R ~ 440 and being associated two a second unstable mode, which holds a
profile along the axial direction which is different from the profile associated to the most unstable mode. This
second mode is more affected by the variable viscosity field and becomes the most unstable hydrodynamic mode,
in the variable viscosity case.

However, the new critical Reynolds number is now associated to the new unstable modes, which emerge
from the modified flow dynamics, resulting from the coupling with the transport of the relevant chemical specie,
through the concentration dependent viscosity. The new critical Reynolds number for stationary disturbances is
R = 52.3, a number significantly smaller than 285.36, the critical value for constant viscosity fluids (Malik, 1986).

25 20
[ 3 0,61 B
2,0 15 I ]
1’5, 1,0 l 0,41 3 4 B
al0 B + B F 2 1
0,57 0v57 0,2+ 1
O’O, 0,0 I 00!z i
_0,5 | _0’5 | | | |
0 200 400 600 0 200 400 600 00 02 04 06 08 10
R R a

(a) (0) (©)

Figure 3: The neutral satbility curves of stationary perturbations (w, = 0.000), in the @ X R (a), 8 x R (b)
and « x 8 (c¢) planes. Curves No. 1 refer to constant viscosity fluids; Curves No. 2 refer to the stability limit
of the hydrodynamic mode associated to the variable viscosity case; Curves No. 3 refer to the stability limit of
the chemical mode associated to the variable viscosity case. Curves No. 4 refer to perturbations turning with
angular velocity w = 0.025. These last curves are preliminary.

5. Conclusions

In conclusion, we studied the effect of the coupling, of a mass concentration field, on the stability of the
hydrodynamic field close to an iron rotating disk electrode. The mass concentration field is generated by the
electro-dissolution of the electrode in a 1 M H5SOy4 solution and the coupling of the two fields occurs through
the dependence of the viscosity, on the concentration of the chemical specie. The fluid viscosity at the electrode
surface was evaluated using the experimental value of the current density. The critical Reynolds number
of the hydrodynamic modes are reduced to approximately 50% of the value associated to constant viscosity
flows and the unstable region is enlarged to much higher wavenumbers. In addition, a new class of unstable
modes, associated to the transport dynamics of the relevant chemical specie emerges and the absolute minimum
Reynolds number of the coupled fields locates in the new curve. The absolute minimum is R = 52.3, a number
more than five times smaller than the critical Reynolds number for constant viscosity fluids, R = 285.36. The
stability analysis was performed for stationary disturbances, turning with the angular viscosity of the electrode.
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